SHEET METAL FORMING IN THE ERA OF INDUSTRY 4.0

USING DATA AND SIMULATIONS TO IMPROVE UNDERSTANDING, PREDICTABILITY AND PERFORMANCE

Sravan tatipala svt@bth.se

1927, Volvo PV 4

<u>Link</u>

2019, Volvo V60

VS

Manufacturing goals

Customers demands

Worldwide automobile production 2000-2018 (in million vehicles)

200'

2017 2018

Cars Ocommercial vehicles

200⁸

Mini Coopers Link

Industries

- Rethink strategies
- New ways to improve process
- Zero-defect manufacturing, first-time right production-popularity
- Last decade-manufacturing process data collection
- Trend augmented further by Industry 4.0, 2011

PRESSURE to DO MORE in LESS TIME at LOWER COSTS

AHSS = Advanced High Strength Steel

Sheet metal coils

Blanking line

Blank

SMF: transforms a piece of sheet metal into desired shape

Punch Blankholder Blank Die

SMF IN ACTION

Major Forming Step

Automotive manufacturing

SHEET METAL FORMING (SMF)

PRODUCT QUALITY

PROCESS PERFORMANCE

- Challenging:
 - Varying production conditions.
 - Complex physical phenomena.
 - Multiple variables.
- Issues: springback, wrinkles, fractures.

Springback (Link)

Tearing (Link)

Wrinkles (Link)

AIM & RQ

- Challenges and opportunities within SMF.
- In-line measured data and simulations can improve SMF understanding, predictability, performance.

How can in-line measured data combined with process simulations aid understanding of sheet metal forming process?

RESEARCH METHODLOGY

DRM basic framework (adapted from Blessing and Chakrabarty, 2009

A BURNEL AND

Why DRM?

- Supports both understanding and improvement
- Provides tools: as-is / to-be situations.

RESEARCH CASE

Volvo XC 90 Press-line

Volvo XC 90 front door-inner

Major forming step

INSPECTION

Lubrication Amount, Type, Distribution

- Issues: wrinkles, fracture, springback.
- Cause: varying tribology, input (material properties, thickness, temperature, stroke rates, tool deformations.....
- Dealt by experts: tool force, temperature drop, alter surface, replace tool.
- Costly, halt production, no guarantee, generate new errors
- Equipment to measure tribology conditions.
- Unsure of effect.
- Major challenge: right combination of process settings.
- Lack of knowledge of interdependencies and influences of parameters.
- Simulation-based investigation- understand further.

Played in real-time (same rate as in production)

Played in slow-motion (to visualize forming operation)

SIMULATION BASED INVESTIGATION

- Systematic investigation- AutoForm Sigma
- Design variables
 - Lubrication amount
 - Material properties (R,R_m, R_{p0.2})
 - Blankholder force
- Design of Experiment (DOE): Latin hypercube

Configuration 1	

material property variation (R,R_m,R_{p0.2})

Configuration 2

lubrication amount variation

Design variables	Material coating	Material Scatter	No. of sections	Blankholder Force (Tonne)		Lubricant (g/m ²)	
Configurations			-	Nominal	Range	Nominal	Range
Config 1	GI	Yes	1	150	130-300	2.0	1.0-3.0
Config 2	GI	No	5	150	130-300	1.0 1.5 2.0	1.0-2.0 1.5-2.5 2.0-3.0

- Discretization based on Latin-Hypercube approach
- Triangular elastic-plastic shell elements
- Initial mesh size-20 mm
- 5-integration points over sheet thickness.

SIMULATION BASED INVESTIGATION RESULTS

- Modelled lubrication profile influenced predicted quality.
- Model accuracy.
- Allowed exploration.

Potential: improve understanding parameter correlations and effect on predicted part quality.

Formability

INCORPORATING DATA WITHIN SIMULATION

- Challenging & tedious.
- Data processing and configuration tasks required
- Limited features within CAE softwares
- Further study: to address this issue

	A		0 C E C C				
1	Committee	Dete.	Addres, No.	Different and	Langh, Pusiton, et	SOLD Head Pupilier Dep.	
18	No-Alt	Retrotated 25 Kills	1	1.041288	11	417	
1	No.443	304040753497	1	1.127889	11	407	
3	Assent1	1011-01-04-01-25 16 101	1	1.163462	11	417	
1	Bel-ALCI	2017-07-08-01-28-36-200	1	1100.0	11	-427	
1.6	Autors .	201404001253027	1	107054	10	427	
0	Ashears .	30141464126820	1	1104987	11	411	
1	No.440	2014/04/05 8 (6)	1	USPE	11	45	
19	Beegs .	301545-040125 18:382	1	106479	11	4/1	
3	SHEARS .	2011-01-08-01/28-34 2911	1	11108	11	-411	
T	Benda's	2011-01-01-01-01-01-01-01	1	100402	11	400	
1	Tables .	2011-01-09-0120-36 317	1	100254		-162	

Approx 5 Million data points/ hour

10, 101-04,1	2011017017010170180.000	A	1.1.1.1.1.10		1786
17/101-6825	2011-07-05-07.55 400	2	1.134748	28	-146
18 900-6801	2014年4月25年47	1	1.136223	18	-137
18,108-6411	201404023840	-1-	1300132	TA	109
25.168-6471	2012/07/07 01 01 01 01 01 01 01 01 01 01 01 01 01	3.	1.194746	18	411
11 100-0321	2011-01-09-01-25.36-07	3	1 92739	7.8	-116
22 Second	2014/14/05/25 8:40	1	1.154588	2.8	-102
21,349-6803	2014074041253658	1	1.75298	18	412
38,508,6321	测计印刷设置系统2	1	1.187424	7.8	-684
25.100-5471	MITHING PARAMENT	1	LITHO	.18	-676
25,700-8121	201405494072536480	1	107887	18	-486
37,109-6401	201404042538307	1	1.198238		408
28 149 6401	201404041253680	1	1.714(2)	18	458
23,368-6811	测计环转导致偏相的	1	117980	18	440
(0.16e-6471	2011年1月1日日1月1日1日	1.	1.108162	. 19	431
31,100-6321	2011-01-09-07-20 30 800	- 3	1.001209	18	421
12 300-0421	2014040425360	1	1.081.598	11	406
30,700-0407	2012414802253603	1	1.02765		405
38 \$80-5817	211147-0117-2134-000	1	1.06725		-145

AUTOMATED STRATEGY

Section 4

Section 5

- Import Data
- Sorting/Analysis
- Approximate values
- **Remove Outliers** .
- **Determine sections** .
- Lubricant amounts •
- Modify CAD geometry
- Assign lubricant values

Blank width (mm)

114

338

0.9146

1,2269

Data Configuration

AUTOMATED STRATEGY RESULTS

- Automation: reduced overall modelling effort.
- Necessary for large datasets

Potential to improve understanding and predictability of SMF. However, applicability of results-additional challenges-further study.

HYBRID APPROACH

Proposed framework implements a hybrid data-and-model-based approach

CONCLUSIONS

- Phenomenological to structured investigation.
- In-line measured data and simulations- potential improve SMF understanding, predictability.
- Facilitated by accurate simulation models, systematic investigations and an automated strategy.
- To use improved undersstaning-framework-hybrid approach-disturbances in reality, process behaviour knowledge.

FUTURE WORKS

- Further validation, implementation, test of framework.
- Results applicability to other part's production.
- Results applicability to SMF in other domains.
- Highly interesting: Design products for smart manufacturing.

Data will talk to you if you're willing to listen.

- Jim Bergeson

Acknowledgements: Supervisors, Dr. Mats Sigvant, Knowledge Foundation, Tillväxtverket and ERUF, Company Partners

THANK YOU